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A web-based geovisualization framework for exploratory analysis of individual 
VGI contributor’s participation characteristics
Guiming Zhang

Department of Geography & the Environment, University of Denver, CO, USA

ABSTRACT
Understanding the participation characteristics of VGI (volunteered geographic information) con-
tributors is important as their active participation and consistent data contribution are key to 
success of any VGI project. Existing studies on this matter focused primarily on deriving and 
interpreting participation patterns of contributor groups. There is a lack of investigation into the 
participation pattern of individual contributors, which can be complementary to a comprehensive 
understanding of VGI contributors’ participation characteristics. Building and using a custom web- 
based geovisualization framework, this study explores the individual-level participation character-
istics of VGI contributors from the perspectives of spatial, temporal, thematic, and social interaction 
patterns. I conducted geovisual exploratory data analysis on VGI datasets from the iNaturalist 
biodiversity citizen science project to gain intuitions on the clustering and variabilities of participa-
tion patterns in iNaturalist, detect participation pattern shifts over time and form explanation 
hypotheses, and assess and develop metrics to measure participation. The geovisualization frame-
work is expected to be generally applicable to other VGI datasets for exploring individual-level 
contributor participation patterns. This work is among the first efforts to explore individual-level 
VGI participation characteristics through geovisualization and geovisual analytics.
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1. Introduction

The past two decades or so have witnessed booming 
adoptions of volunteered geographic information (VGI) 
(Goodchild, 2007) for research and applications in geo-
graphy, ecology, and sociology, among many other dis-
ciplines (Connors et al., 2012; Cui et al., 2021; Yan et al.,  
2020). Participants in VGI initiatives contribute geore-
ferenced and timestamped observations of the physical 
and social environments (Zhang, 2021). Such collective 
voluntary data contribution efforts have produced VGI 
datasets capable of revealing the dynamics of a wide 
range of geographic phenomena at various spatiotem-
poral scales (Fink et al., 2020; Haklay & Weber, 2008; 
Huang et al., 2020; Zhang, Zhu, Huang, Ren, et al., 2018; 
Zook et al., 2010). For example, data from the eBird 
citizen science project were used for modeling avian full 
annual cycle distribution and population trends at land-
scape- and regional-scales (Fink et al., 2020).

Volunteer contributors, acting as citizen sensors on 
the ground, are at the center of VGI. A VGI record 
typically has four components: “who” (observer) reports 
“what” (thematic information) at “where” (location) 
and “when” (time) (Zhang & Zhu, 2018). The “who” 
component is the basis for other components for it 
represents the volunteer observer, the subject who 

conducts observation of a phenomenon of interest at 
a chosen geographic location and time point. 
Volunteers are essential to VGI because recruiting and 
retaining participants to contribute data is key to sus-
taining any VGI project (Bégin et al., 2018). Moreover, 
many of the data quality issues associated with VGI can 
be traced back to the underlying data genesis processes 
with a focus on the “who” component. Demographic 
characteristics of VGI contributors may impact VGI 
data quality. For example, contributors of higher socio-
economic status can afford to travel farther to collect 
data and elderly contributors are less likely to collect 
data at places that require strenuous hikes to reach. 
Spatial, temporal, and thematic biases in VGI are also 
attributable to the “who” component as it is up to the 
volunteer to decide what phenomenon to observe and 
where and when to carry out the observation. As an 
example, bird watchers who submit data to eBird tend 
to concentrate birding efforts in populous areas and 
places of better accessibility and they contribute more 
birding records during bird migration seasons (Zhang,  
2020).

Moreover, social interactions among VGI contribu-
tors, whatever form that takes, are intrinsic to VGI 
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communities (Wang & Ye, 2018). VGI relies on the 
ability of a social network of contributors to provide 
enough “eyes” to converge on the facts of the geographic 
feature under observation, and on a hierarchy of trusted 
individuals acting as moderators or gate-keepers in the 
network to assure data quality (Goodchild & Li, 2012). 
For instance, OpenStreetMap contributors can edit and 
revise spatial entities digitized by other contributors 
(Sarkar & Anderson, 2022). iNaturalist citizen science 
project participants can identify species observations 
submitted by other participants or vote on identifica-
tions proposed by others (Unger et al., 2021). Birding 
records submitted to eBird, if flagged by the automated 
filters, are vetted by a network of regional experts in bird 
occurrences (Kelling et al., 2013). Such social interac-
tions underpinning VGI communities is a key driver of 
the success of VGI projects (Sbrocchi et al., 2022; 
Sullivan et al., 2009).

Understanding the participation characteristics of 
VGI contributors is of significant benefit. To begin 
with, it sheds light upon designing effective recruiting 
and engagement strategies targeted at certain types of 
participants to grow VGI projects and to ensure the 
longevity of VGI communities (Ponciano & Brasileiro,  
2014). As an example, VGI projects can recognize their 
“loyal” contributors who have been actively and regu-
larly contributing for a long time and facilitate them to 
mentor newcomers (Aristeidou et al., 2017). Knowledge 
of VGI contributors’ behavior pattern also informs bet-
ter use of VGI data. Obviously, such knowledge helps 
increase the awareness of VGI data quality issues that 
may arise from heterogeneous contributor behaviors 
(August et al., 2020; Zhang, 2020). One step further, 
analytical methods that are grounded in a clear under-
standing of VGI contributors’ data contribution char-
acteristics can be devised to effectively account for 
biases and errors wherever VGI data is used in analysis 
or modeling exercises (Johnston et al., 2021; Zhang & 
Zhu, 2019a, 2019b; Zhang, Zhu, Huang, & Xiao, 2018).

Existing studies on participation characteristics in 
VGI projects and other types of online communities 
have largely focused on group-level participation pat-
terns, rarely exploring at the individual level. The gen-
eral methodology adopted by these studies consists of 
three steps (Aristeidou et al., 2017; Kishimoto & Kobori,  
2021; Ponciano & Brasileiro, 2014). First, a set of metrics 
are computed for individual contributors to depict the 
temporal (e.g. activity ratio, periodicity), spatial (e.g. 
active area size), and data content (e.g. proportion of 
taxa recorded in a biodiversity citizen science project) 
characteristics of that contributor’s activities. Second, 
based on their scores on the metrics, contributors are 
clustered into a small number of groups wherein 

contributors in the same group possess more “similar” 
values on the metrics than contributors in different 
groups. Third, the “center” of each group, depicted by 
the average values on the metrics within that group, is 
treated as the “typical” activity pattern for that group, 
which is subsequently interpreted to elucidate group- 
level participation characteristics. For instance, biodi-
versity citizen science project participants were clus-
tered into “dabbler”, “steady”, and “enthusiast” 
(Boakes et al., 2016), whilst OpenStreetMap contribu-
tors were categorized as “nonrecurring mappers”, 
“junior mappers”, and “senior mappers” (Neis & Zipf,  
2012) or “locals” vs “outsiders” (Quinn, 2016), wherein 
each of the participant groups represents a distinct par-
ticipation behavior pattern.

This group-oriented method, albeit instrumental for 
gaining high-level understanding of the distinct patterns 
of participation, has certain limitations. First, it reduces 
the activity patterns of a large number of individual 
contributors to just a few “typical” group-level profiles. 
Therefore, anomalous activity patterns (i.e. “outliers”) 
which do not fall well into the groups are simply 
neglected, although they can be very important for 
gaining novel insights on abnormal participation beha-
viors (Xin, 2022). In addition, such profiles represent 
some sort of “average” participation patterns that can-
not be attached to any specific contributor. Thus, inter-
pretations of such “fictitious” profiles may not always be 
meaningful. Moreover, in some cases, variations among 
the activity patterns of individual contributors are so 
subtle that reducing individual’s activities to discrete 
behavioral groups is not always desirable. Instead, it is 
favorable to simply place individual’s activities along 
axes of the metrics that better reflect the continuous 
variation between individuals (August et al., 2020). 
Most importantly, many metrics adopted in the existing 
studies were derived from conceptual frameworks of 
user engagement (O’Brien & Toms, 2008), or based on 
general domain knowledge (August et al., 2020; Boakes 
et al., 2016). There lacks an emphasis on exploratory 
data analysis through which effectiveness of the existing 
metrics can be evaluated or additional metrics devel-
oped for depicting participation characteristics in the 
context of a particular VGI project.

Exploring participation characteristics at the indivi-
dual level can be complementary to investigating parti-
cipation patterns at the group level. Individual-level 
participation profiles, unlike “fictitious” group profiles 
(i.e. averaged patterns), represent authentic activity pat-
tern of specific VGI participants. Anomalous partici-
pants with interesting contribution patterns thus are 
not excluded from analysis for knowledge discovery 
(Xin, 2022). Furthermore, profiling the activity pattern 
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of individual contributors is usually an important step 
in exploratory data analysis, which could be informative 
to subsequent formal analyses. For instance, by explor-
ing and contrasting individual contributor’s spatial, 
temporal, and thematic (i.e. data content) characteris-
tics, relevant metrics can be developed to measure par-
ticipation patterns to better reflect the continuous 
variation in participation behaviors (August et al.,  
2020), or to differentiate participation patterns for 
meaningful clustering (Ponciano & Brasileiro, 2014). 
Lastly, this exploratory data analysis process helps gen-
erate hypotheses for explaining the causes of the simi-
larity and difference among participation patterns and 
any pattern change over time at the individual- or 
group-levels (Aristeidou et al., 2017; Aristeidou, 
Herodotou, Ballard, Young, et al., 2021; Kishimoto & 
Kobori, 2021). In this sense, exploring individual con-
tributor’s participation characteristics can be supple-
mentary to group-level analysis in understanding 
contributor participation patterns. Nonetheless, indivi-
dual-level participation pattern analysis has been under-
studied in existing literature.

The examinination of the participation patterns of 
individual VGI contributors can be well supported by 
geovisualization and geovisual analytics because VGI 
data are inherently geospatial (i.e. associated with loca-
tions). Exploring individual contributor’s participation 
characteristics, just like any other data exploration pro-
cesses in general, requires effective tools to visualize the 
spatial, temporal, and thematic patterns embedded in the 
data (Nakaya & Yano, 2010). Interactivity between 
a human analyst and the visualizations is also highly 
desired as it enables the analyst to flexibly manipulate 
the visualizations for better sense-making and reasoning 
(Roth & MacEachren, 2016). Such requirements can be 
fulfilled by geovisualization and geovisual analytics. 
Geovisual analytics is defined as “the science of analytical 
reasoning with spatial information as facilitated by inter-
active visual interfaces” (Robinson, 2017). Different from 
traditional geovisualization that emphasizes spatial infor-
mation visualization, geovisual analytics focuses on ana-
lytical reasoning and decision-making while utilizing 
interactive geovisualization as an important supporting 
tool (Andrienko et al., 2007; Kraak, 2008).

A variety of geovisualization and geovisual analytics 
tools have been developed to assist sense-making data in 
many domains, such as public health (Chen, Roth, et al.,  
2008), political redistricting (Guo & Jin, 2011), crisis 
management (Tomaszewski & MacEachren, 2012), vessel 
movement (Enguehard et al., 2013), and human mobility 
(Zhang et al., 2019). Specific to VGI-related application of 
geovisualization and geovisual analytics, it was effectively 
utilized on social media data to explore public political 

discourse (Nelson et al., 2015), to analyze crime patterns 
(White & Roth, 2010), and to examine multi-scale human 
mobility (Li et al., 2021). A geovisual analytics tool was 
also designed to help professional users of 
OpenStreetMap understand contributors’ characteristics 
in specific places (Quinn & MacEachren, 2018). 
Additionally, geovisual analytics was used to uncover 
spatio-temporal patterns in event data obtained from 
RSS (Really Simple Syndication) news feed (Robinson 
et al., 2017). Geovisualization and geovisual analytics 
tools generally are highly customized and tailored to the 
specific datasets and analytical problems at hand since the 
tools should be designed following “user-centered” prin-
ciples where much emphasis is placed on assessing key 
user needs and requirements in the context of a particular 
application (Robinson, 2017), although a few toolkits 
were developed to offer generic visualization building 
blocks based on which customized geovisualization and 
geovisual analytics tools can be created (Chen, 
MacEachren, et al., 2008; Ho et al., 2012).

From a technical point of view, early geovisualization 
tools were mostly implemented as desktop applications 
(Chen, MacEachren, et al., 2008; Chen, Roth, et al., 2008; 
Enguehard et al., 2013; Guo & Jin, 2011; Robinson et al.,  
2017; White & Roth, 2010). In later years, more web- 
based tools were developed for geovisual analytics (Ho 
et al., 2012; Li et al., 2021; Nelson et al., 2015; Quinn & 
MacEachren, 2018; Tomaszewski & MacEachren, 2012; 
Zhang et al., 2019). The transition toward web-based 
geovisual analytics, on the one hand, was largely due to 
the widespread use and easy accessibility of the Internet 
(Ho et al., 2012). On the other hand, there are increas-
ingly available web mapping tools (e.g. Leaflet, 
OpenLayers, Kepler.gl), data visualization libraries (e.g. 
D3.js, Plotly.js), and web development frameworks (e.g. 
jQuery, Django) that support developing web-based, full- 
fledged geovisualization and geovisual analytics tools.

For this study, I built and used a custom web-based 
geovisualization framework (https://guiming.github.io/ 
GeovizVGI/) to explore the participation characteristics 
of individual VGI contributors along four dimensions of 
VGI participation characteristics: spatial, temporal, the-
matic, and social interaction. iNaturalist was used as an 
example VGI project wherein contributor participation 
characteristics were explored with the support of the 
geovisualization framework. Similar to many other citi-
zen science projects, participant contributions in 
iNaturalist are highly skewed wherein a small number 
of participants contribute a large portion of the data 
while a majority of participants contribute very little 
(Sauermanna & Franzonib, 2015). The contributions 
can also be very uneven across space, time, and species 
taxonomic categories, resulting in spatial, temporal, and 
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thematic biases (DiCecco et al., 2021; Zhang, 2020,  
2022). Previous studies attempted to examine 
iNaturalist contributors’ participation pattern at the 
group level. For instance, Tupikina et al. (2021) categor-
ized iNaturalist contributors as “low activity”, “obser-
vers”, “identifiers”, or “high activity” based on the 
number of observations and identifications they contri-
bute. Kishimoto and Kobori (2021) grouped iNaturalist 
contributors into “enthusiastic”, “off-and-on”, “tempor-
ary”, or “intense” according to contributor’s activity 
ratio, daily observation, and daily devoted time. The 
distinct participation characteristics of young 
iNaturalist contributors against other age groups were 
also analyzed (Aristeidou, Herodotou, Ballard, Higgins, 
et al., 2021; Aristeidou, Herodotou, Ballard, Young, et 
al., 2021). However, all these works stop short of explor-
ing iNaturalist participant behavior at the individual 
level. Furthermore, geographic components of contri-
butor behavior were not a focus of these studies, and 
only a few metrics were used in the studies while all four 
dimensions of participation characteristics are worth 
considering. Particularly, existing studies exploring 
VGI participation characteristics mostly ignored the 
social interaction dimension, probably due to the lack 
of data capturing the interactions. Nonetheless, under-
standing the social interaction dimension is as impor-
tant as the other three dimensions because social 
interactions are intrinsic to many VGI communities.

Compared to visualizations available on existing VGI 
platforms that are often limited to certain aspects of 
contributions (e.g. a map of observations on iNaturalist 
website), the proposed geovisualization framework pro-
vides much richer visualizations (e.g. interactive maps, 
charts, and graphics) for exploring individual contribu-
tor’s participation patterns along the spatial, temporal, 
thematic, and social interaction dimensions. To the best 
of my knowledge, this study is among the first efforts to 
explore the participation characteristics of individual 
VGI contributors using custom geovisualization and geo-
visual analytics tools (alongside Quinn & MacEachren,  
2018). Section 2 presents the datasets used in this study. 
Section 3 details the design and implementation of the 
geovisualization framework. Section 4 demonstrates the 
utility of the framework through application scenarios 
related to exploring VGI contributor’s participation char-
acteristics, followed by discussion and conclusion in 
Section 5 and Section 6, respectively.

2. Datasets

iNaturalist, launched in 2008, is among the world’s 
largest geospatial biodiversity citizen science projects. 
It is a social network and community of biologists, 

naturalists, and citizen scientists who contribute, 
share, and identify species sightings across the globe 
through the iNaturalist website or mobile app (Unger 
et al., 2021). As of December 2022, iNaturalist has 
compiled over 122 million observations on more 
than 404,500 species based on contributions from 
nearly 2.5 million observers and over 281,400 identi-
fiers (iNaturalist, 2022b). This study uses iNaturalist 
data from 2019 to 2020 to explore iNaturalist contri-
butors’ participation patterns in these two years.

Each iNaturalist observation contains information 
regarding “who” observed “what” species at “where” 
and “when” and, if applicable, identified by “whom.” 
Besides the spatial, temporal, and thematic information 
embedded in iNaturalist data, the social interactions 
therein (i.e. species identification interactions) are also 
of interest when examining the participation character-
istics of iNaturalist contributors. iNaturalist data were 
obtained from two sources: raw observations down-
loaded from iNaturalist (n = 43,033,502 raw observations 
were contributed by 1,454,501 observers in 2019 and 
2020) (iNaturalist, 2022c), and research-grade observa-
tions provided by the Global Biodiversity Information 
Facility (GBIF) containing only observations that meet 
established quality control requirements and were pub-
lished under certain licenses or waivers (n = 17,909,484 
research-grade observations from 435,802 observers were 
identified by 326,500 identifiers in 2019 and 2020) (Ueda,  
2022). Each raw observation includes geographic coordi-
nates of the location of observation, observation date and 
time, species taxon (if any), and observer information 
(e.g. user id, login). A research-grade observation in 
addition has information on the identifier and time of 
identification, which is crucial for reconstructing a social 
network representing species identification interactions 
among iNaturalist contributors.

Additionally, the land cover type at each iNaturalist 
observation location was extracted from the yearly 
MODIS global land cover type dataset (500 m resolution; 
2001–2019) (Sulla-Menashe & Friedl, 2018). iNaturalist 
observation locations in 2019 and 2020 were assigned 
land cover type based on the most recent 2019 land 
cover data. Integrating land cover data to provide con-
textual information about the environment being 
observed by VGI contributors is a novel piece of this 
work (i.e. few prior studies analyzing VGI data had 
integrated land cover data), which can increase the 
potential utility of the custom geovisualization frame-
work. Exploring contribution patterns in iNaturalist 
requires geovisualization and geovisual analytics as 
iNaturalist data are all linked to places (i.e. observation 
locations) and landcover at those places is integrated into 
the system.
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3. The geovisualization framework

3.1. Usage scenarios analysis

Target users of the geovisualization framework devel-
oped in this study (https://guiming.github.io/ 
GeovizVGI/) are researchers who, acting as human 
analysts, use the geovisualization tool to conduct 
exploratory data analysis (Kraak, 2003) on VGI datasets 
to examine the data contribution behavioral pattern of 
individual VGI contributors (Quinn & MacEachren,  
2018). Such explorations are to support application sce-
narios involving three inter-connected tasks: 1) disco-
vering the clustering and variabilities in VGI 
contributor’s participation patterns (Ponciano & 
Brasileiro, 2014), 2) detecting VGI contribution pattern 
change over time and generating explanation hypoth-
eses to explain pattern change (Kishimoto & Kobori,  
2021), and 3) assessing the utility of existing metrics and 
developing additional ones to characterize and differ-
entiate participation patterns (August et al., 2020). 
Information needed for these tasks is all embedded in 
VGI datasets as a VGI record often contains spatial, 
temporal, thematic (data content), and social interac-
tion information (Zhang & Zhu, 2018).

Nonetheless, it can be challenging to achieve the tasks 
by ad-hoc exploration of individual contributor’s parti-
cipation patterns. To enable more guided exploration, 
metrics (features) reflecting contributor participation 
characteristics were derived for clustering contributor 
participation patterns into groups (i.e. number of spe-
cies observations, number of active months, standard 
distance of observation locations, number of species 
taxonomic kingdoms, number of land cover types across 
observation locations, and number of other contributors 
whom a contributor had interactions with through spe-
cies identification). The clustering was done off-line 
during data pre-processing using the k-mean clustering 
algorithm wherein the number of clusters (n = 4) was 
determined based on elbow method (Kodinariya & 
Makwana, 2013) (see Supplemental Material S2 for 
more details). Clustering contributor participation pat-
terns beforehand facilitates the analytics tasks by allow-
ing 1) the examination of the clustering of participation 
patterns, 2) the comparison of individual participation 
patterns against cluster centers (i.e. “average” patterns) 
to reveal participation variabilities (e.g. typical vs. aty-
pical contributors in each cluster), and 3) querying by 
directional changes in the patterns of contributor’s par-
ticipation (e.g. examining contributor whose participa-
tion had increased from 2019 to 2020).

The geovisualization tool shall support the human ana-
lyst’s exploration of participation patterns not only at the 
individual level but also at the complementary group level. 

Specifically, it needs to be able to retrieve information 
regarding the participation pattern clusters and VGI data 
entries contributed by a specified contributor over 
a specified timeframe. It should then construct visualiza-
tions to present the spatial, temporal, and thematic distri-
butions of the data, and the social interactions involving 
the focal contributor. The analyst is offered ample oppor-
tunities to interact with and manipulate the visualizations 
to better suit the analyst’s cognitive processes. The analyst 
forms intuitions, based on the sense-making of the visua-
lizations, to answer questions related to the application 
scenarios. The questions may be regarding both indivi-
dual- and group-level participation characteristics and the 
involvement of multiple dimensions of contribution char-
acteristics (Table 1). Answers to these and similar ques-
tions explicate the spatial, temporal, thematic and social 
interaction patterns depicting the participation character-
istics of the contributor. The analyst repeats this process to 
explore the participation characteristics of many different 
contributors or of the same contributor in different time 
periods with reference to participation cluster centers. 
Intuitions and insights gained in the geovisualization- 
aided exploratory data analyses would facilitate the afore-
mentioned analytics tasks.

3.2. System design

For easy accessibility to potential users, the geovisuali-
zation framework was designed following a web-based 
client-server architecture (Figure 1). Users (human ana-
lysts) rely on a web browser (client) to access the geovi-
sualization tool (i.e. a web page) published on a web 
server. The web server is connected to application ser-
vers that host applications handling queries to the 
underlying database server where the VGI dataset 
resides. The web server can also request base map web 
map services (WMS) from third-party servers as 
a backdrop for geovisualization.

When an analyst lands on the web page provisioning 
the geovisualization tool, it presents a default base map 
(with basic map interaction options such as pan, zoom, 
layer switch, etc.) delivered from third-party web map 
services through the web server. A visual interface is also 
provided for the analyst to set database query para-
meters (e.g. contributor identifier, time frame). The 
query parameters and additional parameters derived 
from the base map display (e.g. spatial extent, zoom 
level) are sent to the web server as requests. The web 
server then processes and forwards requests containing 
the parameters to the application servers. The applica-
tion servers hosting multiple geospatial feature services 
and tile services subsequently map the requests into 
database queries written in SQL (structured query 
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language), which are eventually executed on the data-
base server to retrieve contributor-specific VGI data 
entries and to compute auxiliary statistics.

Query results (data entries and statistics) are 
returned from the database server to the application 
servers where they are encoded as JSON (JavaScript 
object notation) data objects or rendered as vector tiles 
to be delivered back to the web server. The JSON objects 
and vector tiles are sent to the browser as responses. 

Finally, in the browser, map tiles are displayed on top of 
the base map and various visualizations are constructed 
based on data contained in the JSON objects. The user 
interacts with the map and the visualizations to explore 
participation characteristics of a focal individual contri-
butor with reference to participation cluster centers. 
The user can update query parameters to retrieve data 
for a different contributor to compare their contribution 
patterns, or on the same contributor but in different 

Table 1. Example questions posed under the three application scenarios regarding participation characteristics at different levels 
(group vs. individual) and along various dimensions (spatial, temporal, thematic, and social).

Scenario #1: Discovering the clustering and variabilities in VGI contributor’s participation patterns.
Does a contributor conduct observations in a small (or large) geographic area? Individual Spatial
Does a contributor submit data regularly or just sporadically? Do the submissions tend to be geographically clustered or 

spread out evenly?
Individual Temporal and 

spatial
Does a contributor submit many different (or just a few) themes of data? Are submissions from many different places (e.g. 

countries, states, counties)?
Individual Thematic and 

spatial
Does a contributor interact a lot (or very little) with others in the community? Does a contributor interact more with those 

who are geographically closer?
Individual Social and 

spatial
How many distinct participation clusters exist among the contributors? Group All four
What are the typical characteristics of each participation cluster? Group All four
Are there anomalous contributors in each cluster? What are the participation characteristics of such an anomalous 

contributor?
Individual All four

Scenario #2: Detecting VGI contribution pattern change over time and generating explanation hypotheses.
Does a contributor conduct observations in a smaller (or larger) geographic area? Individual Spatial
Does a contributor submit data more (or less) frequently? Do those who contribute more (or less) frequently tend to 

concentrate in certain geographic region?
Individual and 

group
Temporal and 

spatial
Does a contributor’s interested data themes grow (or shrink)? Individual Thematic
Does a contributor’s interaction with others increase (or decrease)? Is the increase (or decrease) more (or less) significant 

between others who are geographically closer (or farther apart)?
Individual Social and 

spatial
Who are the contributors’ whose participation has increased (or decreased)? Group All four
What are the main characteristics of such a pattern change? Group All four
What hypotheses could be generated to explain such a pattern change? Group All four

Scenario #3: Assessing metrics to measure VGI participation characteristics and developing new metrics.
Does standard distance of observations differentiate the mobility of two contributors? What new spatial metrics may be 

used to measure participation (e.g. number of countries across observations)?
Individual Spatial

Can daily devoted time be adopted to measure participation? What new temporal metrics may be used to measure 
participation (e.g. median weekly observations)?

Individual Temporal

Does the number of species indicate the breath of a contributor’s interests? What new thematic metrics may be used to 
measure participation (e.g. species taxonomic frequency distribution at the kingdom level)?

Individual Thematic

Can node degree (number of contributors interacted with) reflect the social interaction of a contributor? What new social 
metrics may be used to measure participation (e.g. PageRank score)?

Individual Social

Figure 1. The client-server system architecture of the web-based geovisualization framework.
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time frames to compare their patterns at different times. 
The user also has the option to query contributors by 
participation pattern change direction (e.g. contributors 
whose contribution pattern were in cluster 2 in 2019 but 
moved up to cluster 3 in 2020). The map and visualiza-
tions are updated automatically upon receiving query 
result from the server. See Supplemental Material S1 for 
detailed technical implementation of the geovisualiza-
tion tool.

3.3. Geovisualization interfaces

The basic layout of the geovisualization tool is shown in 
Figure 2 (with visualizations for an example focal con-
tributor). The base map with standard interactivity func-
tionalities (zoom, pan, layer switch, layer visibility 
control, etc.) provides a background for visualizing parti-
cipation patterns. A panel floating atop the base map is 
presented to the human analyst for customizing database 
query parameters, including from and to dates that define 
the timespan, number of contributors to randomly select 
from all contributors (stratified by participation cluster), 
number of typical and atypical contributors to randomly 
select from each participation cluster and, optionally, 
a list of user-specified contributors. Here typical and 
atypical contributors are defined as contributors whose 
feature distance to their respective cluster center (as mea-
sured by the six features used for clustering) is within the 
lower 5 percentile and beyond the 95 percentile, respec-
tively. Examining typical and atypical contributors offers 
the analyst opportunities to explore both “average” (typi-
cal) and anomalous (atypical) participation patterns. The 
analyst can also choose to query by contribution pattern 
change direction over the years. These parameters are 
used to query and load the six metrics (features) of cluster 
centers and an initial batch of contributors. Metrics of 
cluster centers and individual contributors are then visua-
lized on a parallel coordinate plot so a particular contri-
butor’s participation pattern can be compared to the 
respective cluster center. The user can modify any of the 
query parameters to reload another batch of contribu-
tions or choose a particular contributor (the focal con-
tributor) from the loaded batch for contributor-specific 
queries and in-depth geovisual explorations.

The returned species observations contributed by 
the focal contributor are mapped on top of the base 
map. A control panel provides access to additional 
visual interfaces constructed based on other data 
retrieved from the server (e.g. time series, identifica-
tion interactions) to facilitate exploring participation 
characteristics of the focal contributor along the spa-
tial, temporal, thematic, and social dimensions, as 
described in detail below.

3.3.1. Spatial characteristics
Spatial patterns of the focal contributor’s observations are 
visualized in multiple ways. A point layer rendering the 
observation locations is overlaid on the base map to show 
the spatial distribution of observations. Each point is 
clickable to activate a popup window displaying detailed 
information regarding an observation (Figure 2). 
A heatmap is created from the observation locations to 
highlight spatial clustering of the observations. The “spa-
tial” checkbox on the control panel displays additional 
interactive pie charts to present distribution of the obser-
vations over land cover types, countries, and sub-country 
administrative units (e.g. states, provinces) (Figure 3). 
These interactive visual constructs are intended to assist 
the analyst’s exploration of the spatial characteristics of 
VGI contributor’s participation.

3.3.2. Temporal characteristics
Temporal trends in the focal contributor’s contributions 
are presented as bar-chart time series. The analyst can 
switch between three target variables to be visualized on 
the time series, namely number of observations, number 
of identifications (among research-grade observations), 
and standard distance of the observation locations (an 
indicator of the spatial spread of the contributor’s obser-
vation activities) (Figure 4). For each time series, the 
analyst can switch between day, month, and year to 
display temporal variability in the target variable at 
different time granularities. Time series of each variable 
includes two views, a zoomable overview bar chart at the 
bottom, and a zoom-in bar chart on the top. The analyst 
can interactively select a focus time period by “brush-
ing” or panning the time axis of the overview, and the 
zoom-in view automatically updates to show temporal 
variations in the target variable during the selected 
period. The analyst can also choose to update the back-
ground map on-the-fly to only show the focal contribu-
tor’s observations within the selected period. These 
interactive visualizations allow the analyst to extract 
temporal patterns of VGI contributor’s participation.

3.3.3. Thematic characteristics
Thematic patterns in the focal contributor’s contribu-
tions are concerned primarily with taxonomic distribu-
tion of the observations (Figure 5). An interactive pie 
chart shows frequency distribution of species observa-
tions at the kingdom taxon level. Down to the species 
level, word clouds are utilized to depict the frequency 
distribution of the observed species common names and 
scientific names. Through the pie chart and word clouds, 
the analyst gains intuitions on the thematic characteris-
tics of the data contributed by the VGI contributor.

CARTOGRAPHY AND GEOGRAPHIC INFORMATION SCIENCE 7



3.3.4. Social characteristics
Social interactions between the focal contributor and other 
VGI contributors are captured with an identification social 
network wherein nodes are contributors who either iden-
tified the focal contributor’s observations or had their 
observations identified by the focal contributor 
(Figure 6). The node at the center of the network represent 
the focal contributor. An edge represents species identifi-
cation interactions between two contributors. Nodes are 
color-coded by contributor id and node size is propor-
tional to the number of identifications made by the respec-
tive contributor. Edge width is determined based on the 
number of identifications between two nodes (link 
weight). Options are offered to interactively manipulate 
(e.g. dragging node or edge, viewing node or edge infor-
mation, opening user profile page on iNaturalist site, etc.) 
or simplify the social network (e.g. by increasing link 
weight threshold). The interactive social network visuali-
zation enables the analyst to explore patterns in the social 
interactions involving the focal contributor. These simple 
network visualization and analysis options provide 
a starting point for exploring VGI contributor’s social 
interaction characteristics, although more advanced visual 
network analytics (Arleo et al., 2022) could be incorpo-
rated in future iterations of the geovisualization tool.

4. Demonstration of application scenarios

To demonstrate the utility of the geovisualization tool, it 
was utilized by the author (referred to as the analyst) to 
explore participation patterns of individual contributors 
with reference to participation cluster centers by examin-
ing the various (geo)visualizations that present the spa-
tial, temporal, thematic distributions of the data 
contributed by the contributor and the social interactions 
involving the contributor. Such explorations are to sup-
port the three intended tasks (see Section 3.1): 1) exam-
ining the clustering and variabilities of iNaturalist 
contributors’ participation patterns, 2) detecting contri-
bution pattern change over time and forming hypotheses 
to explain such pattern change, and 3) assessing the utility 
of existing metrics and developing additional ones to 
characterize and differentiate participation patterns.

4.1. Clustering and variabilities of participation 
characteristics

4.1.1. Participation pattern clusters
The clustering of all iNaturalist contributors’ participation 
patterns in 2019 and 2020 (Section 3.1) resulted in four 
clusters with increasing level of activeness in participation 

Figure 2. Basic layout of the geovisualization interface for exploring individual VGI contributor’s participation characteristics. A mouse 
tooltip explanation is provided for each query and visualization parameter on the query panel (textbox, drop-down, checkbox, button, 
etc.) to explain what it is and what it controls (e.g. explanation for the start date is shown). On the parallel coordinate plot, cluster 
centers are in dashed lines, individual contributors in solid lines, and the focal contributor is in the highlighted solid line. Lines are 
drawn based on values of the six features reflecting contribution characteristics: number of species observations, number of active 
months, standard distance of observation locations, number of species taxonomic kingdoms, number of land cover types across 
observation locations, and number of other contributors whom a contributor had interactions with through species identification.
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(Table 2). The quality of the clustering result is satisfactory 
as reflected by an average Silhouette score of 0.65, indicat-
ing that a reasonable clustering structure was found 
(Ponciano & Brasileiro, 2014) (see Supplemental 

Materials S2 for details). Cluster 1 represents the majority 
of contributors (~84%) who were least active in contribut-
ing and, notably, they often did not engage with other 
contributors through species identification interactions. 

Figure 4. Visualizations of temporal pattern in three target variables (number of observations, standard distance of the observation 
locations, and number of identifications) through bar-chart time series.

Figure 5. Visualizations of patterns in data content of the focal contributor’s observations in terms of the frequency distribution of 
species observations at the kingdom taxon level (pie chart) and at the species level (word clouds based on frequencies of species 
common name and scientific name).
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Contributors in cluster 2 (~15%) and cluster 3 (~1%) both 
had moderate-level contributions and limited interaction 
with others. However, contributors in cluster 3 had a much 
larger standard distance, indicating a much higher mobi-
lity level (e.g. traveling abroad to make observations). 
Contributors in cluster 4 (~0.05%) were highly active, 
submitting thousands of species observations and interact-
ing with hundreds of contributors.

The above contribution cluster centers reflect only 
some sort of abstract “average” pattern in each contri-
butor group. They do not fully represent the variability 
of participation characteristics, even within the same 
cluster. The geovisualization tool offers the analyst 
a variety of interactive visualizations to explore indivi-
dual participation characteristics by revealing the spa-
tial, temporal, thematic, and social patterns embedded 
in the data contributed by individual VGI contributors 
(August et al., 2020). The analyst therefore is able to not 
only concretize the typical contribution patterns (as 
measured by the six features used for clustering) for 

the clusters, but also investigate contributors with non- 
typical (anomalous) contribution patterns to explore 
variabilities therein. Presented below are the participa-
tion profiles of typical contributors from each cluster 
(i.e. randomly selected contributors whose feature dis-
tance to the respective cluster center was within the 
lower 5 percentile) (Figure 7). These typical participa-
tion profiles were used here as examples to visually 
contrast the distinct participation characteristics that 
exist among participants in the iNaturalist community.

The contributor typical of cluster 4 (highly active con-
tributors) regularly contributes large amounts of data. This 
contributor was active every month of 2019 and submitted 
over 3,200 observations (the standard distance among the 
observation locations was 797.9 km) from habitats of 12 
different landcover types on more than 1,200 species in 13 
taxonomic kingdoms. The contributor was socially active, 
having interacted with 1,035 other iNaturalist contributors 
and identified 2,129 species observations. The geovisualiza-
tion framework revealed compositions of this particular 

Figure 6. Visualizations of social interaction patterns of the focal contributor through a social network constructed based on species 
identification interactions between the focal contributor (at the center of the network) and other contributors.

Table 2. Cluster centers of iNaturalist participant contribution patterns.
Cluster 1 Cluster 2 Cluster 3 Cluster 4

# Species observations 5.3 108.7 95.5 5149.0
# Active months 1.6 6.3 5.4 10.9
Standard distance (km) 16.6 154.5 2373.5 414.7
# Species kingdoms 1.5 5.8 4.8 10.7
# Land cover types 1.2 4.6 4.9 9.3
# Interacting contributors 0.0 2.1 2.1 749.9
# Contributors in 2019 586,091 96,304 15,297 318
# Contributors in 2020 871,196 164,655 7,048 612
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contributor’s contributions (which may not be representa-
tive of other contributors in cluster 4): The observations 
were made from four countries (90.1% observations in US); 
Most species observations were in deciduous broadleaf 
forests (46.1%), followed by woody savannas (19.8%), and 
urban and built-up lands (17.4%); More contributions were 
made in the spring and summer months; Most observa-
tions were on plants (51.3%), followed by insects (30.7%).

The contributor representing cluster 3 (moderately 
active contributors with high mobility) had much fewer 
contributions and was active during only five months in 
2019. Throughout 2019, this contributor submitted only 
41 observations (the standard distance was 2332.5 km) 
from seven landcover types on 27 species in five taxo-
nomic kingdoms and identified 9 species observations 
from seven other contributors. The contributor typical 
of cluster 2 (moderately active contributors) submitted 50 
observations (the standard distance was 25.4 km) on 49 
species in 7 kingdoms and identified 34 observations 

from three other contributors (Figure 7). Overall, this 
contributor had a contribution level similar to the cluster 
3 contributor above, with a major difference that species 
observations are much more localized (a much smaller 
standard distance compared to cluster 3). Finally, the 
contributor typical of cluster 1 (least active contributors) 
made only sporadic data contributions (Figure 7). This 
contributor contributed only four species observations in 
just three days and did not identify any species records.

4.1.2. Participation pattern variabilities
The typical participation profiles of the four clusters do not 
represent the full breath of participation variabilities 
among the contributors, even within the same participation 
cluster. The analyst can use the geovisualization tool to 
explore participation variabilities across contributors by 
loading and examining a sample of both typical and atypi-
cal contributors in each cluster (contributors whose feature 
distance to their respective cluster center is within the lower 

Figure 7. Participation profiles of contributors typical of the four clusters.
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5 percentile and beyond the 95 percentile, respectively; see 
Section 3.3). For instance, a contributor in cluster 4 (highly 
active) in 2019 submitted over 37,000 species observations 
on more than 5,200 species in 13 taxonomic kingdoms and 
on 15 land cover types across 59 countries (Figure 8). This 
anomalous contributor had a much higher level of partici-
pation compared to a typical contributor in that cluster in 
terms of the usually large amount of species observations 
and extensive breadth of taxonomic and geographic cov-
erages. Another abnormal contributor in this group 
(Figure 8) submitted average amount of species observa-
tions but had identified observations contributed by over 
4000 other contributors in the community in 2019, an 
astonishingly higher level of social interaction compared 
to a typical contributor in cluster 4.

4.2. Change in participation patterns

4.2.1. Contribution pattern change
In this study, based on the clustering results, 
a contributor’s participation pattern was regarded 

as “changed” if the contributor belonged to differ-
ent participation clusters in 2019 and 2020. Table 3 
shows the trend in contribution pattern change 
over the two years. Among the 287,021 iNaturalist 
contributors who contributed data in both years 
43,886 (15.3%) had increased participation 36,468 
(12.7%) had decreased participation, and the 
remaining (72%) stayed at the same participation 
level.

Using the geovisualization tool, the analyst can query 
contributors by participation pattern change direction, 
who can then compare participation characteristics of 
the same contributor in different periods to verify and 
understand participation pattern change over time 
(Bégin et al., 2018; Kishimoto & Kobori, 2021). As an 
example, an iNaturalist contributor obtained through 
query by decreasing contribution pattern (from cluster 
4 in 2019 to cluster 2 in 2020) was identified and 
analyzed in detail. Although this particular example of 
pattern change by no means exhausts all participation 
pattern changes in the iNaturalist community, it 

Figure 8. Participation profiles of two anomalous (atypical) contributors.

Table 3. The number of iNaturalist contributors in each category of participation pattern 
changes from 2019 to 2020. Cells on the diagonal (in gray) represent contributors whose 
participation stayed at the same level. Above- and below-diagonal cells (in light green and 
light orange) represent contributors whose participation increased and decreased, 
respectively.

2019 
2020 Cluster 1 Cluster 2 Cluster 3 Cluster 4

Cluster 1 152,279 40,281 1,774 21

Cluster 2 25,625 52,723 1,476 284

Cluster 3 4,560 6,217 1,415 50

Cluster 4 6 57 3 250
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exemplifies how the geovisualization tool could be 
adopted to examine participation pattern change.

Overall, this contributor submitted much less data in 
2020 (i.e. 50 observations on 45 species) compared to 
2019 (i.e. 6,818 observations on 2,598 species) 
(Figure 9). Geographically, observations in 2020 were 
all from a relatively small area in Tucson, US whilst 
observations in 2019 were from four different countries 
(the majority of observations were in Tucson, US). In 
terms of land cover, the percentage of observations on 
urban and built-up lands increased from 2.2% (2019) to 
24% (2020). Temporally, monthly contributions in 2019 
were more consistent while contributions in 2020 were 
of much smaller numbers and were more variable. 
There were also more observations reported with 
obscured geographic coordinates in 2020, indicating 
increased geoprivacy awareness (Figure 9.C1). With 
respect to observed species composition, the share of 
arachnids (e.g. spiders, scorpions) increased from 2.2% 
(2019) to 10% (2020), although insects and animals 
remained to be the prominent taxa in both years. In 
terms of community social interactions, the contributor 
interacted with much fewer contributors and identified 
fewer observations in 2020 (i.e. 350 connected contri-
butors; 583 identifications) compared to 2019 (i.e. 923 
connected contributors; 3495 identifications). The 
above pattern changes all indicate reduced participation 
of this particular contributor in 2020.

4.2.2. Hypotheses to explain pattern change
The analyst can examine multiple contributors sampled 
from any particular pattern change category (Table 3) to 
visually investigate how a contributor’s participation 
pattern changed along the spatial, temporal, thematic, 

and social dimensions. The analyst thus can gain intui-
tions on the commonalities across contributors in that 
pattern change category, which would inform generat-
ing plausible hypotheses to explain the observed pattern 
change. For example, participation pattern changes 
along the four dimensions in Figure 9 all indicate 
reduced participation of this contributor in 2020. The 
analyst investigated other contributors’ participation 
patterns whose participation had similarly decreased 
(from cluster 4 in 2019 to cluster 2 in 2020) and con-
firmed that this change trend was also present among 
other iNaturalist contributors. Among many potential 
explanations, the analyst came up with one reasonable 
hypothesis explaining this pattern change, which is as 
follows. This contributor used to carry out many obser-
vations in natural environments (only 2.2% of the 
observations in 2019 were on urban and built-up 
lands), sometimes even at sites in foreign countries. 
However, due to mobility restrictions and health risks 
brought by the COVID-19 (coronavirus disease 2019) 
pandemic (Kishimoto & Kobori, 2021), this participant 
had to stay in the hometown throughout much of 2020 
and contributed a smaller number of observations cov-
ering fewer taxonomic kingdoms and fewer land cover 
types. Meanwhile, the percentage of observations made 
on urban and built-up lands had increased to 24%, 
a trend consistent with documented impacts of the 
pandemic on other biodiversity-themed citizen science 
project (Hochachka et al., 2021). Besides, there were 
large portions of observations with obscured geographic 
coordinates starting from July 2020 through end of 
the year. It may be that many observations were con-
ducted at or near where the participant’s home location 
and therefore observations were obscured to protect 

Figure 9. Participation patterns of the same contributor in 2019 and 2020.
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geoprivacy (i.e. preventing the data from revealing 
where the contributor lives) (iNaturalist, 2022a).

The geovisualization framework is meant to be an 
exploratory data analysis tool for examining contribu-
tion patterns (and pattern changes) in a VGI commu-
nity. Empirically testing or verifying the hypotheses on 
what may have shaped the patterns (or what may have 
caused pattern changes) and explicating their implica-
tions can be left to subsequent formal data analyses.

4.3. Metrics for measuring participation

While conducting the above geovisual exploratory data 
analyses using the geovisualization tool (Sections 4.1 
and 4.2), the analyst was constantly extracting the spa-
tial, temporal, thematic, and social patterns presented by 
the visualizations and interpreting the similarities and 
differences between patterns across contributors. 
Understandably, these processes do not rely solely on 
the visualizations the geovisualization tool offers 
because the analyst’s background knowledge also plays 
important roles in such processes. Nonetheless, the geo-
visualization tool provides visual aids to facilitate such 
endeavors. Specifically, the analyst noticed that the tool 
is instructive for evaluating the utility of existing parti-
cipation measurement metrics and can inform develop-
ing additional metrics to depict participation 
characteristics along the four dimensions (i.e. spatial, 
temporal, thematic, and social). As an example, when 
visually comparing the spatial distribution of observa-
tions contributed by different contributors on the point 
location map, the analyst observed much variability in 
the spatial spread of observations across contributors. 
The standard distance across observation locations then 
came up naturally into the author’s mind as a spatial 
metric reflecting such variability. As a result, standard 
distance was included (as one of the six features) for 
clustering contributor participation patterns 
(Section 3.1).

4.3.1. Spatial metrics
Several metrics have been proposed to measure the 
spatial characteristics of a VGI participant’s data con-
tributions: active area size, number of recording areas, 
and spatial aggregation (August et al., 2020). These 
metrics should be helpful for differentiating the spatial 
characteristics of participation patterns in iNaturalist, as 
the participation profiles explored in Section 4.1 
(Figure 7) seem to have very different values on the 
three metrics.

New metrics can be developed to further distinguish 
a participant’s spatial characteristics of participation 
(e.g. mobility and preferred observation environments). 

For instance, when comparing the spatial characteristics 
of contributions from different contributors using the 
point map and the pie chart showing observation com-
position by country, one may realize that the number of 
visited countries can reflect differential ability of the 
contributors to travel across country borders (e.g. the 
four contributors in Figure 7 visited 4, 2, 1 and 1 
countries, respectively). Moreover, land cover type(s) of 
the majority of observation locations can indicate the 
participant’s preferred observing landscape (in 
Figure 7, the contributors’ major observation land 
cover types were deciduous broadleaf forests, deciduous 
broadleaf forests, grasslands, and urban and built-up 
lands, respectively). Value changes in such metrics can 
also capture pattern change over time. For example, due 
to travel constraints brought by the COVID-9 pandemic 
(Kishimoto & Kobori, 2021), a participant used to carry 
out observations in natural environments at interna-
tional destinations may be forced to stay in the home 
country and contribute a larger share of observations in 
urban environments (Hochachka et al., 2021). As an 
example, the contributor depicted in Figure 9 traveled 
to another three countries outside of the United States 
in 2019 but stayed in the United States in 2020. 
Additionally, observations of a contributor form spatio-
temporal trajectories reflecting the contributor’s mobi-
lity. Statistics summarizing spatial characteristics of 
mobility trajectories, such as displacement, duration, 
speed, interval, radius and entropy (Wang et al., 2019), 
can also be considered as new spatial metrics for mea-
suring participation.

4.3.2. Temporal metrics
Based on the conceptual framework of user-engagement 
(O’Brien & Toms, 2008), metrics have been developed 
to measure the temporal characteristics of participation 
(i.e. activity ratio, daily devoted time, weekly activity, 
relative activity duration, periodicity, and variation in 
periodicity) (Aristeidou et al., 2017; August et al., 2020; 
Boakes et al., 2016; Ponciano & Brasileiro, 2014). 
Activity ratio, weekly activity, periodicity, and variation 
in periodicity can be computed with information that is 
often available in VGI datasets to measure the overall 
activeness of a contributor and the temporal variability 
in the contributions. However, information (e.g. dura-
tion of observation session) is usually not available for 
computing daily devoted time. Also, relative activity 
duration (the ratio of days during which a participant 
remains linked to the project relative to the total num-
ber of days elapsed since the participant joined the 
project until the project is over) does not apply to 
most VGI projects because they are often open-ended 
and still continuously running (e.g. iNaturalist).
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These metrics are derived simply based on whether 
the participant is actively contributing data on a -
particular day. They do not represent temporal varia-
tions in other aspects of contributor behavior or in data 
content. New metrics such as the median and inter- 
quartile range of number of species observations and 
identifications, observations to identifications ratio, and 
percentages of obscured observations per week (or per 
month) can be computed to indicate the temporal vari-
abilities in data content, participant’s contributing role 
tendency (observer vs. identifier), and geoprivacy 
awareness, respectively. Such metrics help reveal differ-
ences in the participation patterns along the temporal 
dimension across iNaturalist participants (e.g. the four 
“typical” contributors in Figure 7) or across time peri-
ods (e.g. the contributor in Figure 9).

4.3.3. Thematic metrics
Metrics were designed to reflect the thematic character-
istics of data contents contributed by individual partici-
pants in biodiversity citizen science projects, such as 
proportion of taxa recorded, rarity recording, and sin-
gle-species lists (see August et al., 2020 for definition 
and calculation). Proportion of taxa recorded and rarity 
recording can be computed on iNaturalist data to indi-
cate whether a participant often records a few or many 
species (e.g. the four contributors in Figure 7) and to 
which extent the participant focuses on reporting only 
rare species. Single-species lists (the proportion of visits 
on which the participant submitted a single record) is 
not applicable to iNaturalist as records therein are indi-
vidual species observations without indicating which 
observations resulted from the same “visit.” This metric, 
however, may be useful for other VGI datasets, such as 
eBird where such information is available (Sullivan 
et al., 2009).

Additional metrics might be derived to reflect 
whether a participant tends to be a generalist (e.g. gen-
eral naturalists) or a specialist (e.g. birders) from the 
perspective of certain taxonomic rank. For instance, the 
number of kingdoms covered by species observations 
contributed by a participant could indicate the span of 
the observed species biodiversity at the kingdom level 
(e.g. kingdom-level distributions Figure 7). One step 
further, the entropy of the kingdom-level species fre-
quency distribution can be calculated to quantify if 
a participant spreads observation efforts across multiple 
kingdoms relatively evenly (i.e. higher entropy), or nar-
rowly focuses on a few kingdoms (i.e. lower entropy).

4.3.4. Social metrics
Very few metrics have been developed to represent 
participation characteristics along the social dimension, 

although social interactions is the implicit backbone of 
many VGI communities (Sbrocchi et al., 2022). This 
might be attributed to the fact that many published 
VGI datasets do not contain necessary information for 
reconstructing community social interactions.

Social interactions in the iNaturalist project take the 
form of inter-participant species identifications among 
others. A social network representing such interactions 
can be reconstructed based on information contained in 
the “recordedby” (observer) and “identifiedby” (identi-
fier) fields of the research-grade iNaturalist observations 
(Ueda, 2022). Nodes in the social network correspond to 
individual contributors and edges represent species 
identification interactions among contributors. Node- 
level metrics (e.g. centrality measures such as node 
degree and PageRank score) thus can be derived 
through social network analysis (McCulloh et al.,  
2013) to capture individual’s participation characteris-
tics along the social dimension (e.g. contributors in 
Figure 7). These metrics quantify a contributor’s parti-
cipation characteristics in the social network and differ-
entiate participants with distinct social interaction 
patterns.

5. Discussion

5.1. Practical implications for iNaturalist

The patterns of iNaturalist participants’ contributions 
uncovered through geovisual explorations in this study 
have practical implications for the iNaturalist project in 
terms of devising strategies for increasing participation or 
improving data quality. This study confirms participation 
inequality in iNaturalist (Table 2), a phenomenon com-
mon across many online communities that a small por-
tion of contributors are highly active in contributing data 
whilst most others are ephemeral (Carron-Arthur et al.,  
2014). Highly active participants (e.g. cluster 4 contribu-
tors in Figure 7) are already very much self-motivated 
and they tend to stay in the community and contribute 
heavily (Zhang, 2020). To increase the overall participa-
tion, iNaturalist should elicit more contributions from 
low active or ephemeral contributors (cluster 1 contribu-
tors in Figure 7) by encouraging them to achieve higher 
levels of contribution (Haklay, 2016) (becoming clusters 
2, 3, or 4 contributors by submitting more observations 
on a wider range of species and in many different types of 
habitat, being active across more months, sampling 
a larger geographic area, or identifying more of other 
contributors’ observations). For example, iNaturalist 
could set up a system of contribution milestones as 
challenges for individual contributors, send out monthly 
e-mails to remind them of the gaps toward achieving the 
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next milestone, and issue official recognitions or rewards 
(e.g. medal markers on profile page) when they achieve 
milestones. This same mechanism may also help alleviate 
contribution decline (Table 3) by keeping existing active 
contributors engaged. Moreover, the participation pro-
files of individual contributors (e.g. Figure 7) reflect con-
tributor expertise and can be exploited for improving 
species identification accuracy in iNaturalist data. For 
instance, when resolving conflicting species identifica-
tions proposed by multiple contributors, the platform 
can put more weight on the opinions of contributors 
who had more experiences in observing and/or identify-
ing related species (e.g. it is reasonable to assume that 
a contributor who has observed and/or identified a large 
number of fungi species before is more capable of identi-
fying a given fungus observation).

5.2. Generalizability of the geovisualization 
framework

As demonstrated in Section 4, the proposed geovisuali-
zation framework is useful for conducting exploratory 
VGI data analyses that aim to examine individual VGI 
contributor’s participation characteristics, detect parti-
cipation pattern change and form hypotheses for 
explaining the change, and assess and develop metrics 
for measuring participation.

Conceptually, the geovisualization framework is 
expected to transfer to many VGI projects beyond 
iNaturalist as long as the VGI datasets contain informa-
tion regarding the spatial, temporal, thematic, and social 
dimensions of participation. In principle, any VGI data-
sets at the minimum are spatially and temporally refer-
enced with geographic coordinates and timestamps, 
explicitly or implicitly labeled with thematic informa-
tion, and associated to individual contributors. Inter- 
volunteer social interactions, though inherent to many 
VGI communities, may or may not be reflected in the 
resulted VGI datasets. For example, bird watchers main-
tain a large and active eBird community discussion 
group on Facebook to facilitate discussion among bird-
ers (Facebook, 2022), but social interactions therein are 
not integrated into the published eBird datasets (eBird,  
2021). Nonetheless, even in cases where social interac-
tions among VGI contributors cannot be reconstructed 
due to data unavailability, the proposed framework can 
still be utilized to facilitate volunteer’s participation 
characteristics exploration, participation pattern change 
detection, hypothesis formation, metrics design, etc. 
along the spatial, temporal, and thematic dimensions.

From a technical point of view, the high-level archi-
tecture design of the geovisualization framework and the 
component software (e.g. PostgreSQL/PostGIS) and web 

programming libraries used to materialize the architec-
ture design is expected to be generally applicable to any 
VGI datasets. Implementation specifics, however, may 
differ across datasets as geovisualization interfaces should 
be contextualized and tailored to the specific dataset and 
analytical problems at hand (Robinson, 2017). For exam-
ple, different VGI datasets may well result in different 
database structures and therefore different SQL queries 
for retrieving relevant information. The specific visuali-
zations may also be different because the most appropri-
ate and effective way of visualizing data highly depends 
on dataset characteristics (data content, data format, etc.). 
Nevertheless, the architecture design of the geovisualiza-
tion tool and its implementation for the iNaturalist data-
set should offer a framework and backbone for others to 
build geovisual analytics tools customized to their respec-
tive VGI datasets of interest.

Lastly, the developed geovisualization framework 
facilitates exploratory VGI data analysis, which is often 
only one of the initial steps in a full-stack data analytics 
workflow. One should not expect to conduct end-to-end 
data analytics solely using the tool. Instead, this tool 
should be utilized in combination with other data ana-
lysis tools external to the system (e.g. statistical analysis, 
machine learning, etc.) in conducting comprehensive 
analyses of VGI participation characteristics. For 
instance, if the end goal is to understand iNaturalist 
contributors’ participation patterns, this tool can help 
gain intuitions on the number of distinct clusters and 
the characteristics of each cluster. It can also assist 
developing new metrics to measure individual contri-
butor’s participation, which serve as input features to 
advanced analytical algorithms for clustering the con-
tributors based on their participation patterns or for 
detecting pattern change over time. Moreover, based 
on intuitions gained on the contribution pattern 
changes (from 2019 to 2020) uncovered through geovi-
sual exploratory data analyses in this study, one can 
conduct a subsequent study to investigate how the 
COVID-19 pandemic may have played a role in causing 
such changes by analyzing the association between pat-
terns in the iNaturalist dataset and patterns in COVID- 
19 datasets.

5.3. Comparison with geovisualization tools for 
OpenStreetmap

A variety of geovisualization tools have been developed 
for analyzing data from OSM, which arguably is the 
most prominent VGI project in the world. Most OSM 
tools focus on the thematic contents of OSM data with-
out paying attention to the underlying contributors. For 
instance, OSM Inspector (https://tools.geofabrik.de/ 
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osmi/) is for users to visually inspect the geometries of 
OSM data to help with identifying and fixing geometric 
errors in the data (e.g. duplicate nodes, self-intersecting 
ways). OSM History eXplorer (https://hex.ohsome.org/) 
allows examining the spatial distribution and temporal 
trend of map features relating to different topics (health, 
building, land use, disaster, etc.). OpenStreetMap 
Analytics (http://osm-analytics.org/) visualizes the den-
sity of different types of OSM data (i.e. buildings, roads, 
rivers, amenities, places, and hospitals), provides 
a temporal histogram to show edits frequency over 
time, and offers a map for detecting gaps in OSM 
buildings data.

Unlike the above tools which are not capable of 
revealing OSM contributors’ contribution patterns, 
several among the suite of OSM tools developed by 
Pascal Neis (https://resultmaps.neis-one.org/) could 
be useful in this regard. OSMstats (https://osmstats. 
neis-one.org/), has platform-level time series at var-
ious granularities (by year, by month, or by day) to 
show the temporal variations in contributors (e.g. 
active members, newly registered members), edits 
on map elements (created, modified, or deleted) 
and submitted changesets. At the individual level, 
OSMstats provides summary statistics (e.g. map 
changes, activity days) by individual contributors. 
Who’s around me? (https://resultmaps.neis-one.org/ 
oooc) maps out the location of individual contribu-
tors (e.g. main activity center). Your OSM Heat Map 
(https://yosmhm.neis-one.org/) visualizes editing 
hotspots for a given individual contributor. In addi-
tion, OpenStreetMap Crowd (Quinn & MacEachren,  
2018; https://sterlingquinn.github.io/apps/crowdlens/ 
) provides individual contributor-level visualizations 
based on subsets of OSM data in selected cities 
around the world. The visualizations can be altered 
by temporal and other filters. It is intended to help 
professional users of OSM to better understand the 
contribution characteristics of induvial OSM contri-
butors in a specific place (i.e. city).

Compared to these OSM tools with focus on plat-
form-level trends or on specific aspects of indivi-
dual-level contribution, the geovisualization tool 
proposed in this study is tailored for visualizing 
and analyzing individual-level contribution patterns 
in iNaturalist while considering all of the four gen-
eral dimensions of VGI contribution (i.e. spatial, 
temporal, thematic, and social). A full-scale compar-
ison of contribution patterns between iNaturalist and 
OSM is beyond the scope of this study. A future 
study may utilize these tools to investigate the simi-
larities and differences in contribution patterns 
among contributors of the two VGI projects.

6. Conclusion

This article describes a custom web-based geovisualization 
framework (as an exploratory data analysis tool) for 
exploring participation characteristics of individual VGI 
contributors. The framework provides a variety of inter-
active visualizations to aid human analysts to extract the 
spatial, temporal, thematic, and social interaction patterns 
in participation. I demonstrated the usefulness of the geo-
visualization framework through examples of use on 
iNaturalist data in three application scenarios: 1) gaining 
intuitions on the clustering and variabilities of individual 
participation patterns, 2) detecting participation pattern 
shifts over time and forming explanation hypotheses, 
and 3) assessing and developing metrics to measure parti-
cipation. The geovisualization framework is expected to be 
applicable for exploring individual-level participation 
characteristics in VGI communities beyond iNaturalist. 
The author’s experiences of utilizing the geovisualization 
framework for exploring the iNaturalist data was overall 
smooth and positive, although a comprehensive usability 
testing by other target users of the geovisualization frame-
work was not conducted in this study. This work is among 
the first efforts to explore individual-level VGI participa-
tion characteristics using custom geovisualization and geo-
visual analytics tools. Such geovisual explorations can 
inform in-depth investigation of VGI contributors’ parti-
cipation characteristics through quantitative analysis in 
future work (e.g. testing hypotheses on what may have 
caused contribution pattern changes, and empirically eval-
uating the efficacy of the new metrics).
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